
A Case Study Using Kubernetes/Docker 
Routing, Geocoding, and Basemap 
Microservices with QGIS and 
OpenLayers



Introduction

Boundless provides geospatial tools and services for managing 
data and building applications. 

Chris is a DevOps Engineer primarily focused on supporting 
applications running on Kubernetes. Interests include:
Cloud Computing, Linux, and other Open Source technologies

Joe is the Content Services Lead and helps with: Middle Tier 
Development and Integrator of fun projects including:
GeoServer, OpenLayers, GeoShape, GeoGig

Chris Del Pino
DevOps Engineer
cdelpino@boundlessgeo.com

Joseph Miller
Content Services Lead
jmiller@boundlessgeo.com

mailto:cdelpino@boundlessgeo.com


Productizing

BCS



● One interface with lots of options
● One token with access multiple vendors
● Routing and Geocoding for QGIS analysis
● Routing and Geocoding to enhance your 

OpenLayers experience 

Why?



One Basemap 
Interface

Request Structure
{scheme}://{host}/{BCS_api_version}/basemaps/{provider}/{basemap-type}/{z}/{x}/{y}.{image-type-extension}
Metadata
http://api.boundlessgeo.com/basemaps?version=0.1
Examples
http://api.boundlessgeo.com/basemaps/mapbox/satellite-streets/1/2/3.png?version=0.1
https://api.boundlessgeo.com/basemaps/planet/california/1/2/3.png?version=0.1
https://api.boundlessgeo.com/basemaps/boundless/osm/{z}/{x}/{y}.png?version=0.1



One Geocoding 
Interface

Examples
http://api.boundlessgeo.com/geocode/mapbox/address/x/-77.368115/y/38.905939?version=0.1
http://api.boundlessgeo.com/geocode/mapbox/address/tulsa?version=0.1
-or-
Batch CSV
Response

GeocodePoint {
Double x;
Double y;
String candidatePlace;
String candidateSource;
String score;
}

GeocodeResponse { 
List<GeocodePoint>geocodePoints;
int errorCode;
String errorMessage;
String id;
}



One Routing Interface

Examples
http://api.dev.boundlessgeo.io/v1/route/mapbox/originx/{originx}/originy/{originy}/destinationx/{destinationx}/destina
tiony/{destinationy}

https://api.dev.boundlessgeo.io/v1/route/mapzen/originaddress/2938%20harvest%20glen%20ct%20herndon%20v
a/destinationaddress/9300%20brookville%20rd%20silver%20spring%20md
https://api.dev.boundlessgeo.io/v1/route/mapbox?waypoints=-77.331398,38.852845%7C2938%20Harvest%20Gle
n%20Ct%20Herndon%20VA%2020171
-or-
Batch and Matrix CSV



One Routing Interface

 RouteResponse {
int errorCode = 0;
String errorMessage;
double distance;
double duration;
Geometry geometry;
List<Leg> legs;
String id;
String from;
String to;
}

Leg {
double duration;
double distance;
List<Step>steps;
}

Step {
Geometry geometry;
double distance;
double duration;
String instructions;
}



● One Self-Contained, Stateless, and Performant Token
● JSON Web Token + GRPC
● Paid Tiers

− Mapbox Basemaps, Routing, Geocoding
− Mapzen Routing, Geocoding
− Planet Basemaps/Imagery
− DigitalGlobe Basemaps

● Free As In ...
− Boundless OSM Basemap
− GraphHopper OSM routing (coming soon)
− OSRM OSM routing (coming soon)
− Nominatim OSM geocoding (coming soon)

Services Single Sign 
On



Spring Cloud 
Microservices



What now?

• Find a good solution to run these containers
• Good options to choose from:



Why Kubernetes

• Big names behind it and using it
• Great community support 
• Able to run on different cloud providers and bare 

metal



Our Architecture

• Running 3 clusters on AWS:
• Development, Test, and Production
• Each has 3 masters, spread across 3 AZ’s
• Each has 6 nodes, 2 in each AZ



Our Architecture



How do we deploy 
this?

• Kops
• Kubernetes tool to build and maintain configuration 

for Kubernetes cluster
• Able to use this for making updates to cluster



Deployment Workflow

Changes pushed Trigger build job

Create container image Push to container registry



Deployment Workflow

Trigger deploy job

Deploy job

New container image pushed

Deploy to cluster



Storage

• Most of our containers are stateless
• With the exception of Postgres and Kafka

• Using EFS to store data



Monitoring

• Sysdig for checking service availability
• Assertible for validating api endpoints



Cluster Upgrade

• We can upgrade existing clusters to newer version of 
Kubernetes, but don’t want to affect any users

• Simply spin up new clusters, test, and cut over to new 
ones by updating DNS



What next?

• Horizontal pod auto scaling
• Auto scaling of infrastructure
• Federation

• On premises/air gapped with:
● Pelias and Nominatim Geocoding
● GraphHopper and OSRM Routing
● Custom Routing with PgRouting
● Custom OSM Basemaps With GeoServer EC


